Skip to main content

An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections

  • Conference paper
Pattern Recognition (DAGM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4713))

Included in the following conference series:

  • 3052 Accesses

  • 37 Citations

Abstract

Confidence measures are important for the validation of optical flow fields by estimating the correctness of each displacement vector. There are several frequently used confidence measures, which have been found of at best intermediate quality. Hence, we propose a new confidence measure based on linear subspace projections. The results are compared to the best previously proposed confidence measures with respect to an optimal confidence. Using the proposed measure we are able to improve previous results by up to 31%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kondermann, C., Kondermann, D., Jähne, B., Garbe, C.: Comparison of Confidence and Situation Measures and their Optimality for Optical Flows. International Journal of Computer Vision (submitted, 2007)

    Google Scholar 

  2. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Internat. Journal of Computer Vision 2, 283–319 (1989)

    Article  Google Scholar 

  3. Barron, J., Fleet, D., Beauchemin, S.: Performance of Optical Flow Techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  4. Haußecker, H., Spies, H.: Motion. In: Handbook of Computer Vision and Applications. ch. 13, vol. 2, Academic Press, London (1999)

    Google Scholar 

  5. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly Accurate Optic Flow Computation with Theoretically Justified Warping. International Journal of Computer Vision 67(2), 141–158 (2006)

    Article  Google Scholar 

  6. Weickert, J., Schnörr, C.: A Theoretical Framework for Convex Regularizers in PDE-Based Computation of Image Motion. International Journal of Computer Vision 45(3), 245–264 (2001)

    Article  MATH  Google Scholar 

  7. Lucas, B., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision (DARPA). In: Proceedings of the 1981 DARPA Image Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  8. Horn, B., Schunk, B.: Determining Optical Flow. Artificial Intelligence 17, 185–204 (1981)

    Article  Google Scholar 

  9. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining Local and Global Optic Flow Methods. International Journal of Computer Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

  10. Bruhn, A., Weickert, J.: A Confidence Measure for Variational Optic flow Methods. Springer Netherlands, pp. 283–298 (2006)

    Google Scholar 

  11. Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE journal of pattern analysis and machine intelligence (PAMI) 13(8), 775–790 (1991)

    Article  Google Scholar 

  12. Barth, E.: The minors of the structure tensor. In: Proceedings of the DAGM (2000)

    Google Scholar 

  13. Mota, C., Stuke, I., Barth, E.: Analytical Solutions For Multiple Motions. In: Proceedings of the International Conference on Image Processing ICIP (2001)

    Google Scholar 

  14. McCane, B., Novins, K., Crannitch, D., Galvin, B.: On Benchmarking Optical Flow. Computer Vision and Image Understanding 84(1), 126–143 (2001), http://www.cs.otago.ac.nz/research/vision/Research/OpticalFlow/opticalflow.html

    Article  MATH  Google Scholar 

  15. Scharr, H.: Optimal filters for extended optical flow. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, Springer, Heidelberg (2007)

    Google Scholar 

  16. Roth, S., Black, M.: On the spatial statistics of optical flow. In: Tenth IEEE International Conference on Computer Vision, vol. 1, pp. 42–49. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  17. Black, M., Yacoob, Y., Jepson, A., Fleet, D.: Learning Parameterized Models of Image Motion. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (1997)

    Google Scholar 

  18. Nieuwenhuis, C., Yan, M.: Knowledge Based Image Enhancement Using Neural Networks. In: Proceedings of the 18th International Conference on Pattern Recognition, pp. 814–817 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fred A. Hamprecht Christoph Schnörr Bernd Jähne

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kondermann, C., Kondermann, D., Jähne, B., Garbe, C. (2007). An Adaptive Confidence Measure for Optical Flows Based on Linear Subspace Projections. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds) Pattern Recognition. DAGM 2007. Lecture Notes in Computer Science, vol 4713. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74936-3_14

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics