Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Human-Computer Interaction. Towards Mobile and Intelligent Interaction Environments
  3. Conference paper

Multimodal Emotion Classification in Naturalistic User Behavior

  • Conference paper
  • pp 603–611
  • Cite this conference paper
Human-Computer Interaction. Towards Mobile and Intelligent Interaction Environments (HCI 2011)
Multimodal Emotion Classification in Naturalistic User Behavior
  • Steffen Walter17,
  • Stefan Scherer18,
  • Martin Schels18,
  • Michael Glodek18,
  • David Hrabal17,
  • Miriam Schmidt18,
  • Ronald Böck19,
  • Kerstin Limbrecht17,
  • Harald C. Traue17 &
  • …
  • Friedhelm Schwenker18 

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6763))

Included in the following conference series:

  • International Conference on Human-Computer Interaction
  • 3029 Accesses

  • 49 Citations

Abstract

The design of intelligent personalized interactive systems, having knowledge about the user’s state, his desires, needs and wishes, currently poses a great challenge to computer scientists. In this study we propose an information fusion approach combining acoustic, and bio-physiological data, comprising multiple sensors, to classify emotional states. For this purpose a multimodal corpus has been created, where subjects undergo a controlled emotion eliciting experiment, passing several octants of the valence arousal dominance space. The temporal and decision level fusion of the multiple modalities outperforms the single modality classifiers and shows promising results.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Survey on AI-Based Multimodal Methods for Emotion Detection

Chapter © 2019

³Comparative Analysis of Audio–Video Multimodal Methods for Emotion Recognition

Chapter © 2024

Real-time emotional health detection using fine-tuned transfer networks with multimodal fusion

Article 22 January 2022

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Categorization
  • Emotion Theory
  • Emotion Regulation
  • Emotional Development
  • Multivariate Analysis
  • Natural Language Processing (NLP)

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Brown, G., Kuncheva, L.I.: “Good” and “Bad” diversity in majority vote ensembles. In: El Gayar, N., Kittler, J., Roli, F. (eds.) MCS 2010. LNCS, vol. 5997, pp. 124–133. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Davis, S., Mermelstein, P.: Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech and Signal Processing 28(4), 357–366 (1980)

    Article  Google Scholar 

  4. Dietrich, C., Schwenker, F., Palm, G.: Classification of time series utilizing temporal and decision fusion. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 378–387. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  6. Hermansky, H.: The modulation spectrum in automatic recognition of speech. In: Proceedings of IEEE Workshop on Automatic Speech Recognition and Understanding, pp. 140–147. IEEE, Los Alamitos (1997)

    Chapter  Google Scholar 

  7. Hermansky, H., Hanson, B., Wakita, H.: Perceptually based linear predictive analysis of speech. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1985), vol. 10, pp. 509–512 (1985)

    Google Scholar 

  8. Kim, J., André, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30, 2067–2083 (2008), http://portal.acm.org/citation.cfm?id=1477073.1477535

    Article  Google Scholar 

  9. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley Interscience, Hoboken (2004)

    Book  MATH  Google Scholar 

  10. Maganti, H.K., Scherer, S., Palm, G.: A novel feature for emotion recognition in voice based applications. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 710–711. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Peter, J., Lang, M.M.B., Cuthbert, B.N.: International affective picture system (iaps): Affective ratings of pictures and instruction manual. Tech. rep., NIMH Center for the Study of Emotion & Attention, University of Florida (2008)

    Google Scholar 

  12. Picard, R.W.: Affective Computing. MIT Press, Cambridge (2000)

    Google Scholar 

  13. Platt, J.: Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. Advances in Large Margin Classifiers, 61–74 (1999)

    Google Scholar 

  14. Rabiner, L.R., Schafer, R.W.: Digital processing of speech signals. Prentice-Hall Signal Processing Series. Prentice-Hall, Englewood Cliffs (1978)

    Google Scholar 

  15. Russell, J.: A circumplex model of affect. Journal of Personality and Social Psychology 39, 1161–1178 (1980)

    Article  Google Scholar 

  16. Schwenker, F., Dietrich, C., Thiel, C., Palm, G.: Learning of decision fusion mappings for pattern recognition. International Journal on Artificial Intelligence and Machine Learning (AIML) 6, 17–21 (2006)

    Google Scholar 

  17. Smyth, P.: Clustering sequences with hidden markov models. Advances in Neural Information Processing Systems 9, 648–654 (1997)

    Google Scholar 

  18. Tax, D.M.J., van Breukelen, M., Duin, R.P.W., Kittler, J.: Combining multiple classifiers by averaging or by multiplying. Pattern Recognition 33(9), 1475–1485 (2000)

    Article  Google Scholar 

  19. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc., New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Medical Psychology, University of Ulm, Germany

    Steffen Walter, David Hrabal, Kerstin Limbrecht & Harald C. Traue

  2. Institute of Neural Information Processing, University of Ulm, Germany

    Stefan Scherer, Martin Schels, Michael Glodek, Miriam Schmidt & Friedhelm Schwenker

  3. Chair of Cognitive Systems, Otto von Guericke University Magdeburg, Germany

    Ronald Böck

Authors
  1. Steffen Walter
    View author publications

    Search author on:PubMed Google Scholar

  2. Stefan Scherer
    View author publications

    Search author on:PubMed Google Scholar

  3. Martin Schels
    View author publications

    Search author on:PubMed Google Scholar

  4. Michael Glodek
    View author publications

    Search author on:PubMed Google Scholar

  5. David Hrabal
    View author publications

    Search author on:PubMed Google Scholar

  6. Miriam Schmidt
    View author publications

    Search author on:PubMed Google Scholar

  7. Ronald Böck
    View author publications

    Search author on:PubMed Google Scholar

  8. Kerstin Limbrecht
    View author publications

    Search author on:PubMed Google Scholar

  9. Harald C. Traue
    View author publications

    Search author on:PubMed Google Scholar

  10. Friedhelm Schwenker
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. School of Public Health, Institute of Health Informatics, University of Minnesota, 1260 Mayo (MMC 807), 420 Delaware Street S.E., 55455, Minneapolis, MN, USA

    Julie A. Jacko

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walter, S. et al. (2011). Multimodal Emotion Classification in Naturalistic User Behavior. In: Jacko, J.A. (eds) Human-Computer Interaction. Towards Mobile and Intelligent Interaction Environments. HCI 2011. Lecture Notes in Computer Science, vol 6763. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21616-9_68

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-21616-9_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21615-2

  • Online ISBN: 978-3-642-21616-9

  • eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Emotion Recognition
  • Confusion Matrix
  • Information Fusion
  • Audio Feature
  • Decision Fusion

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

172.71.194.170

ICE Institution of Civil Engineers (3000167333) - Institution of Civil Engineers Library (2000027800)

Springer Nature

© 2026 Springer Nature