Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Artificial Neural Networks in Pattern Recognition
  3. Conference paper

On Graph-Associated Matrices and Their Eigenvalues for Optical Character Recognition

  • Conference paper
  • pp 104–114
  • Cite this conference paper
Artificial Neural Networks in Pattern Recognition (ANNPR 2012)
On Graph-Associated Matrices and Their Eigenvalues for Optical Character Recognition
  • Miriam Schmidt,
  • Günther Palm &
  • Friedhelm Schwenker 

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7477))

Included in the following conference series:

  • IAPR Workshop on Artificial Neural Networks in Pattern Recognition
  • 1448 Accesses

Abstract

In this paper, the classification power of the eigenvalues of six graph-associated matrices is investigated and evaluated on a benchmark dataset for optical character recognition. The extracted eigenvalues were utilized as feature vectors for multi-class classification using support vector machines. Each graph-associated matrix contains a certain type of geometric/spacial information, which may be important for the classification process. Classification results are presented for all six feature types, as well as for classifier combinations at decision level. For the decision level combination probabilistic output support vector machines have been applied. The eigenvalues of the weighted adjacency matrix provided the best classification rate of 89.9 %. Here, almost half of the misclassified letters are confusion pairs, such as I-L and N-Z. This classification performance can be increased by decision fusion, using the sum rule, to 92.4 %.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

Pure Spectral Graph Embeddings: Reinterpreting Graph Convolution for Top-N Recommendation

Chapter © 2023

Some new aspects of main eigenvalues of graphs

Article 01 November 2019

Eigenvalue Analysis with Hough Transform for Shape Representation and Classification

Chapter © 2018

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Categorization
  • Graph Theory
  • Graph Theory in Probability
  • Linear Algebra
  • Matrix Theory
  • Multivariate Analysis

References

  1. Cvetković, D.M., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications, 3rd edn. Vch Verlagsgesellschaft Mbh (1998)

    Google Scholar 

  2. Chung, F.R.K.: Spectral Graph Theory. CBMS Regional Conference Series in Mathematics, vol. 92. Oxford University Press (1997)

    Google Scholar 

  3. Brouwer, A.E., Haermers, W.H.: Spectra of Graphs. Universitext. Springer (2012)

    Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1990)

    Google Scholar 

  5. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Transactions on Systems, Man, and Cybernetics 13(3), 353–362 (1983)

    MATH  Google Scholar 

  6. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)

    Article  MATH  Google Scholar 

  7. Luo, B., Wilson, R.C., Hancock, E.R.: Spectral embedding of graphs. Pattern Recognition 36(10), 2213–2230 (2003)

    Article  MATH  Google Scholar 

  8. Wilson, R.C., Hancock, E.R., Luo, B.: Pattern vectors from algebraic graph theory. IEEE Trans. Pattern Anal. Mach. Intell. 27(7), 1112–1124 (2005)

    Article  Google Scholar 

  9. Schmidt, M., Schwenker, F.: Classification of Graph Sequences Utilizing the Eigenvalues of the Distance Matrices and Hidden Markov Models. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 325–334. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  11. Riesen, K., Neuhaus, M., Bunke, H.: Graph Embedding in Vector Spaces by Means of Prototype Selection. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Diestel, R.: Graph Theory, 3rd edn. Graduate Texts in Mathematics, vol. 173. Springer (2005)

    Google Scholar 

  13. Bollobás, B.: Modern Graph Theory, 2nd edn. Graduate Texts in Mathematics. Springer (2002)

    Google Scholar 

  14. Vapnik, V.N.: The nature of statistical learning theory, 2nd edn. Statistics for Engineering and Information Science. Springer (1999)

    Google Scholar 

  15. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer (2007)

    Google Scholar 

  16. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Adaptive Computation and Machine Learning. MIT Press (2002)

    Google Scholar 

  17. Riesen, K., Bunke, H.: IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) SSPR&SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Riesen, K., Neuhaus, M., Bunke, H.: Bipartite Graph Matching for Computing the Edit Distance of Graphs. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)

    Article  MATH  Google Scholar 

Download references

Authors
  1. Miriam Schmidt
    View author publications

    Search author on:PubMed Google Scholar

  2. Günther Palm
    View author publications

    Search author on:PubMed Google Scholar

  3. Friedhelm Schwenker
    View author publications

    Search author on:PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Fondazione Bruno Kessler (FBK), 38123, Trento, Italy

    Nadia Mana

  2. Institute of Neural Information Processing, University of Ulm, 89069, Ulm, Germany

    Friedhelm Schwenker

  3. Dipartimento di Ingegneria dell’Informazione, Università di Siena, 53100, Siena, Italy

    Edmondo Trentin

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, M., Palm, G., Schwenker, F. (2012). On Graph-Associated Matrices and Their Eigenvalues for Optical Character Recognition. In: Mana, N., Schwenker, F., Trentin, E. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2012. Lecture Notes in Computer Science(), vol 7477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33212-8_10

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-33212-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33211-1

  • Online ISBN: 978-3-642-33212-8

  • eBook Packages: Computer ScienceComputer Science (R0)Springer Nature Proceedings Computer Science

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • graph classification
  • weighted adjacency matrix
  • spectrum
  • support vector machine

Publish with us

Policies and ethics

Societies and partnerships

  • The International Association for Pattern Recognition
    The International Association for Pattern Recognition (opens in a new tab)

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

108.162.241.25

Not affiliated

Springer Nature

© 2026 Springer Nature