Skip to main content
Log in

An improved two-sweep iteration method for absolute value equations

  • Original Article
  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this short paper, a new technology-based two-sweep iteration method for the absolute value equations is proposed, and, by constructing a novel comparison theorem about the norm size of these two matrices A and |A|, the convergence of the above method is given on the premise that the included parameters meet some appropriate conditions. Numerical simulation experiments are presented to verify that our method is more effective and practical than other popular methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Rohn J (2004) A theorem of the alternatives for the equation \(Ax+B|x|=b\). Linear Multilinear Algebr 52:421–426

    Article  MathSciNet  Google Scholar 

  • Ketabchi S, Moosaei H (2012) An efficient method for optimal correcting of absolute value equations by minimal changes in the right hand side. Comput Math Appl 64:1882–1885

    Article  MathSciNet  Google Scholar 

  • Ketabchi S, Moosaei H (2012) Minimum norm solution to the absolute value equation in the convex case. J Optim Theory Appl 154:1080–1087

    Article  MathSciNet  Google Scholar 

  • Ketabchi S, Moosaei H, Fallhi S (2013) Optimal error correction of the absolute value equations using a genetic algorithm. Comput Math Model 57:2339–2342

    Article  Google Scholar 

  • Mangasarian OL, Meyer RR (2006) Absolute value equations. Linear Algebra Appl 419:359–367

    Article  MathSciNet  Google Scholar 

  • Noor MA, Iqbal J, Al-Said E (2012) Residual iterative method for solving absolute value equations. In: Abstr. Appl Anal

  • Huang BH, Ma CF (2019) Convergent conditions of the generalized Newton method for absolute value equation over second order cones. Appl Math Lett 92:151–157

    Article  MathSciNet  Google Scholar 

  • Lian YY, Li CX, Wu SL (2018) Weaker convergent results of the generalized Newton method for the generalized absolute value equations. J Comput Appl Math 338:221–226

    Article  MathSciNet  Google Scholar 

  • Guo P, Wu SL, Li CX (2019) On the SOR-like iteration method for solving absolute value equations. Appl Math Lett 97:107–113

    Article  MathSciNet  Google Scholar 

  • Cottle RW, Pang JS, Stone RE (1992) The linear complementarity problem. Academic Press, New York

    MATH  Google Scholar 

  • Tseng P (1995) On linear convergence of iterative methods for the variational inequality problem. J Comput Appl Math 60:237–252

    Article  MathSciNet  Google Scholar 

  • Cottle RW, Dantzig GB (1968) Complementary pivot theory of mathematical programming. Linear Algebra Appl 1:103–125

    Article  MathSciNet  Google Scholar 

  • Hadjidimos A, Lapidakis M, Tzoumas M (2011) On iterative solution for linear complementarity problem with an \(H_{+}\)-matrix. SIAM J Matrix Anal Appl 33:97–110

    Article  MathSciNet  Google Scholar 

  • Zheng N, Yin JF (2014) Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an \(H_+\)-matrix. J Comput Appl Math 260:281–293

    Article  MathSciNet  Google Scholar 

  • Mangasarian OL (2009) A generalized Newton method for absolute value equations. Optim Lett 3:101–108

    Article  MathSciNet  Google Scholar 

  • Li CX (2016) A modified generalized Newton method for absolute value equations. J Optim Theory Appl 170:1055–1059

    Article  MathSciNet  Google Scholar 

  • Cvetkovió L (1997) Two-sweep iterative methods. Nonlinear Anal 30:25–30

    Article  MathSciNet  Google Scholar 

  • Woźnicki ZI (1993) Estimation of the optimum relaxation factors in partial factorization iterative methods. SIAM J Matrix Anal Appl 14:59–73

    Article  MathSciNet  Google Scholar 

  • Golub GH, Varga RS (1961) Chebyshev semi-iterative methods, successive overrrelaxation iterative methods, and second order Richardson iterative methods-I. Numer Math 3:147–156

    Article  MathSciNet  Google Scholar 

  • Golub GH, Varga RS (1961) Chebyshev semi-iterative methods, successive overrrelaxation iterative methods, and second order Richardson iterative methods-II. Numer Math 3:157–168

    Article  MathSciNet  Google Scholar 

  • Wu SL, Li CX (2016) Two-sweep modulus-based matrix splitting iteration methods for linear complementarity problems. J Comput Appl Math 302:327–339

    Article  MathSciNet  Google Scholar 

  • Shen SQ, Huang TZ (2006) Convergence and comparison theorems for double splittings of matrices. Comput Math Appl 51:1751–1760

    Article  MathSciNet  Google Scholar 

  • Davis T (2020) University of Florida sparse matrix collection, University of Florida, Gainesville. http://www.cise.ufl.edu/research/sparse/matrices/

  • Ke YF, Ma CF (2017) SOR-like iteration method for solving absolute value equations. Appl Math Comput 311:195–202

    MathSciNet  MATH  Google Scholar 

  • Caccetta L, Qu B, Zhou GL (2011) A globally and quadratically convergent method for absolute value equations. Comput Optim Appl 48:45–58

    Article  MathSciNet  Google Scholar 

  • Bai ZZ (2010) Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer Linear Algebra Appl 17:917–933

    Article  MathSciNet  Google Scholar 

  • Zheng N, Yin JF (2013) Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems. Numer Algor 64:245–261

    Article  MathSciNet  Google Scholar 

  • Zhang LL (2011) Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numer Algor 57:83–99

    Article  MathSciNet  Google Scholar 

  • Mezzadri F (2020) On the solution of general absolute value equations. Appl Math Lett 107:106462

    Article  MathSciNet  Google Scholar 

  • Ke YF (2020) The new iteration algorithm for absolute value equation. Appl Math Lett 99:105990

    Article  MathSciNet  Google Scholar 

  • Wu SL, Li CX (2020) A note on unique solvability of the absolute value equation. Optim Lett 14:1957–1960

    Article  MathSciNet  Google Scholar 

  • Bu F, Ma CF (2020) The tensor splitting methods for solving tensor absolute value equation. Comput Appl Math 39(3):1–11

    Article  MathSciNet  Google Scholar 

  • Lv CQ, Ma CF (2017) Picard splitting method and Picard CG method for solving the absolute value equation. J Nonlinear Sci Appl 10:3643–3654

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for providing helpful suggestions, which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by the National Natural Science Foundation of China (nos. 11701456, 11801452, 11671060), Fundamental Research Project of Natural Science in Shaanxi Province General Project (Youth) (nos. 2019JQ-415, 2019JQ-196), Fundamental Research Funds for the Central Universities (nos. 2452017219, 2452018017), and the Natural Science Foundation Project of CQ CSTC (no. cstc2019jcyj-msxmX0267)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, Y., Li, Y. et al. An improved two-sweep iteration method for absolute value equations. Comp. Appl. Math. 41, 122 (2022). https://doi.org/10.1007/s40314-022-01832-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1007/s40314-022-01832-3

Keywords

Mathematics Subject Classification